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ABSTRACT
In this paper, we present two general representations for the weighted generalized
inverse Ad,W , which extends earlier results on the Drazin inverse Ad, group inverse
Ag and usual inverse A−1. The first one concerns with the matrix expression involving
Moore-Penrose inverse A+. The second one holds on the Kronecker products of
two and several matrices. Furthermore, some necessary and sufficient conditions
for Drazin and weighted Drazin inverses are given for the reverse order law

( )d d dAB B A=  and , , ,( )d Z d R d WAB B A=  to hold. Finally, we apply our result to
present the solution of restricted singular matrix equations.
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INTRODUCTION AND PRELIMINARY RESULT

One of the important types of generalized inverses of matrices is the weighted Drazin
inverse, which has several important applications such as, applications in singular
differential, difference equations, Markov chains, statistical problems, control system
analysis, curve fitting, numerical analysis and Kronecker product systems [e.g., 4, 7,
9, 13, 15, 16, 17]. Here we use the following notations. Let ,m nM  be the set of all
matrices over the complex number field  £ and when m= n , we write Mn  instead of

Mn,n . For matrix nm
MA

,
∈  , let  A* be the conjugate transpose of A and rank(A) be the

rank of A. If m
MA∈  is a given matrix, then the smallest non-negative integer k such

that

rank(Ak+1) = rank(Ak)      (1)

is called the index of A and is denoted by Ind(A)=k  .
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It is well known that the Drazin inverse (DI) of mA M∈ with Ind(A)=k   is defined

to be the unique solution mX M∈   satisfying the following three matrix equations:

AkXA = Ak,  XAX = X,  AX = XA       (2)
and is often denoted by X = Ad . Note that the first equation in (2) can be written as

1k kA X A+ = . In particular, when Ind (A)=1, the Drazin inverse of 
m

MA∈  is called

the group inverse of  A, and is often denoted by Ag , but when Ind(A)=0 and m
MA∈

is a non-singular matrix, then  Ad = A-1.

Wang [13] gave that for 
m

MA∈   with Ind(A) = k,

 ( )k k k k
dA A A A= ,  ( ) ( ) ( )k k k k

d d dA A A A=  ,  ( ) ( )k k k k
d dA A A A=                     (3)

 By the uniqueness of the DI, we have

(Ak)d = (Ad)
k        (4)

For more properties concerning Drazin inverses, see [e.g., 3, 4, 10, 14].
Cline and Greville [5] extended the Drazin inverse of square matrix to rectangular

matrix and called it as the weighted Drazin inverse (WDI). The WDI of 
nm

MA
,

∈  with

respect to the matrix ,n mW M∈  is defined to be the unique solution ,m nX M∈  of the
following three matrix equations:

(AW)k+1XW = (AW)k,  XWAWX = X,  AWX = XWA        (5)

 where

k= max {Ind(AW), Ind (WA)}        (6)

and is often denoted by X = Ad ,W . In particular, when  m
MA∈  and W = Im, then Ad,w

reduce to Ad, i.e., Ad = Ad,Im. If 
m

MA∈  is non-singular square matrix and W = Im, it is

easily seen that Ind(A) = 0 and Ad,w = Ad = A-1 satisfies the matrix equations (5).
The properties of WDI can be found in [e.g., 8, 18, 19]. Some notable properties

are: If  
nm

MA
,

∈  with respect to the matrix  ,m nW M∈ and   k = max {Ind(AW),Ind(WA)},

then:

i. Ad,W = A {(WA)d}
2 = {(AW)d}

2 A       (7)
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ii Ad,wW= (AW)d ,  WAd,W = (WA)d       (8)

iii WAWAd,W = WA(WA)d ,  Ad,WWAW = (WA)d AW       (9)

iv One closed-form solution of  Ad,w for a rectangular matrix  
nm

MA
,

∈

 2 2 1

0
, 2 2 1

0

lim ( ) ) ( )

lim ( ) (( ) )

l l

d W l l

AW I AW A
A

A WA WA I
α

α

α

α

+ −

→
+ −

→

⎧ ⎫+⎪ ⎪= ⎨ ⎬
+⎪ ⎪⎩ ⎭

 if l k
if l k

≥
≥                          (10)

The Moore-Penrose inverse (MPI) is a generalization of the inverse of non-singular
matrix to the inverse of a singular and rectangular matrix. The MPI of a matrix 

nm
MA

,
∈

is defined to be the unique solution ,n mX M∈  of the following four Penrose equations:

AXA = A, XAX =A , (AX)* = XA , (XA)* = XA       (11)

and is often denoted by X = A+.

Note that if 
m

MA∈ is non-singular matrix, then A+ = A-1. Regarding various

basic properties concerning MPI, see [e.g., 2, 3, 4, 10].
The general algebraic structures (GAS) of the matrices 

nm
MA

,
∈    

mn
MW

,
∈  A+,

W+, and  , ,d W n mA M∈  with k = max{Ind(AW),Ind(WA)} are (see [e.g., 4,19,20,21]):

 
11 1

22

0
0

A
A L Q

A
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  
11 1

22

0
0

W
W Q L

W
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 , 
1

111 0
0 0

A
A Q L

−
+ −⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 ,       (12)

1
111 0

0 0
W

W L Q
−

+ −⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,  

 1
111 11 11

,
( ) 0

0 0d W
W A W

A L Q
−

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
      (13)

where L,Q,A11,W11   are non-singular matrices, and A22, W22, A22W22, W22A22  are nilpotent

matrices ( A matrix 
n

MA∈   is called nilpotent if Ak = 0 for some positive integer k ).
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In particular, when 
n

MA∈  with Ind(A) = k , W = Im   and L = Q, then we have

11 1

22

0
,

0
A

A L L
A

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦    

1
111 0

00d
A

A L
−

−⎡ ⎤
= ⎢ ⎥

⎦⎣                                       (14)

where L  and A11 are non-singular matrices, and A22 is a nilpotent matrix.
        Greville [6] first studied the reverse order law for the Drazin inverse of the
product of two matrices A and 

n
MB∈  . He proved that (AB)d = BdAd holds under the

condition AB = BA.
Tian [12] gave a necessary and sufficient condition for the reverse order law

(AB)d = BdAd by using a rank identity. A similar result for reverse order law for Drazin
inverse of general multiple matrix product was presented by Wang [14] as follows: Let

A and nB M∈   be given with k=max {Ind(A), Ind(B), Inx(AB)}  . Then

(AB)d=BdAd      (15)

if and only if

 2 1

2 1

2 1

( 1) ( ) 0 0 ( )
0 0

( ) ( ) (( ) )
0 0

( ) 0 0

n k k

k k
k k k

k k k

k k

AB AB
A A

rank rank A rank B rank AB
B B A

AB B

+

+

+

⎡ ⎤−
⎢ ⎥
⎢ ⎥ = + +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  (16)

Finally, the Kronecker product of  ,ij m nA a M⎡ ⎤= ∈⎣ ⎦  and  [ ] ,kl p qB b M= ∈    is given by

[ ]
nqmpijij

MBaBA
,

∈=⊗      (17)

where 
qpij

MBa
,

∈   is the  ij - th block .

For any compatible matrices A, B, C and D; and any real number r , we shall make
frequent use of the following properties of the Kronecker product (see
[e.g.,1,2,7,11,22]):

i.  If AC and BD are well defined, then.
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( )( ) BDACDCBA ⊗=⊗⊗      (18)

ii.  If A and B are square positive (semi) definite matrices, then

( ) rrr
BABA ⊗=⊗       (19)

iii. rank  ( ) =⊗BA rank (A)rank(B)       (20)

iv. Vec (AXBT) =  )( AB⊗ Vec (X)      (21)

where

[ ]T
mnmmm

xxxxxxXVec ............)(
1212111

=      (22)

denotes vectorization by columns of arbitrary matrix  ,m nX M∈

v. If A and B are nilpotent matrices,then BA⊗  is nilpotent matrix
vi. If A and B are unitary matrices, then BA⊗  is unitary matrix.
In this paper, some new matrix expressions involving the three kinds of generalized

inverses of the Kronecker products matrices are established. In addition, by using the
general algebraic structures of matrices (GAS), the necessary and sufficient conditions
for Drazin and weighted Drazin inverses are also given for the reverse order laws
(AB)d = BdAd and (AB)d,Z = Bd,RAd,W  to hold. Finally, we apply our result to present the
solution of restricted singular matrix equations (WAW) X (RBR)T = C .

MAIN RESULT
Observe that, in general, if  A and  nB M∈  are nilpotent matrices, then  AB need not be
nilpotent. As an example, let

0 1 0 0
,

0 0 1 0
A B

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

It is easy to verify that A and B are nilpotent matrices, but 
 1 0

0 0
AB

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 is not

nilpotent, because  ( ) 0kAB AB= ≠  for all positive integer k . This observation is
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important to give a nilpotent condition when we use the GAS of matrices under usual
product as follows:

Theorem 1 : Let

 
11

22

0
0

A
A L

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

1,L−
 

11

22

0
0

B
B L

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1,L−  
11

22

0
0

W
W L

W
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 1,L−          (23)

 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

22

11

0
0

R
R

LR 1−L    
11

22

0
,

0
Z

Z L
Z

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 1L−

      (24)

be the general algebraic structures, respectively, of A, B, W, R and 
n

MZ ∈   with k =

max {Ind(AW), Ind(WA) , Ind(BR),  Ind(RB), Ind(ABZ), Ind(ZAB)}.  Then

(AB)d,Z = Bd,R Ad,w       (25)

if and only if A22B22 is a nilpotent matrix and

( ) 1

111111

1

111111
)( −− WAWRBR = ( ) 1

11111111

−

ZBAZ       (26)

Or equivalently

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

−−−−−−−−−− = ZABZWAWRBR       (27)

Proof :  The GAS of  A,B,W, R  and Z in the assumptions assure that A11, B11, W11, R11
Z11 and L  are non-singular matrices, and   A22, B22, W22, R22 and Z22  are nilpotent.
Then it is well known that the GAS of  Ad,W and Bd,R are given by

( ) 1
11 11 11 1

,

0
,

0 0
d W

W A W
A L L

−

−
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

  
( ) 1

111 11 11
,

0
00

d R
R B RB L L

−
−

⎡ ⎤
= ⎢ ⎥

⎦⎢⎣
      (28)

Computation shows that

( ) ( )1 1
111 11 11 11 11 11

, ,
0

0 0
d R d W

R B R W A WB A L L
− −

−
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

     (29)
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and

          
1

11 11 1 111 11 11 11
,

22 22 ,

0 ( ) 0
( )

0 0 0d Z

d Z

A B Z A B Z
AB L L L L

A B

−
− −⎛ ⎞ ⎡ ⎤⎡ ⎤

= =⎜ ⎟ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

           (30)

if and only if A22B22 is a nilpotent matrix. It is clear from (29) and (30) that

(AB)d,Z = Bd,RAd,w

if and only if  A22B22 is a nilpotent matrix and

( ) ( ) ( ) 1

11111111

1

111111

1

111111

−−− = ZBAZWAWRBR

This completes the proof of Theorem 1.   
If we set  W = R = Z =In  in Theorem 1, we obtain the sufficient and necessary

condition for the reverse order of Drazin inverse as follows.

Corollary 1  Let

1

22

111

22

11

0
0

,0
0

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= LB

B
LBLA

A
LA

be the GAS of A and 
n

MB∈  , respectively, with k = max {Ind(A), Ind(B), Ind(AB)}.

Then
(AB)d = BdAd

if and only if A22B22 is a  nilpotent matrix.
Now, we can also apply the GAS in order to find a new representation of WDI as

follows:

Theorem 2: Let  ,m nA M∈  and 
mn

MW
,

∈  such that  A22W22 and W22A22 are nilpotent

matrices of index k in GAS form. Then the WDI of A with respect to the matrix W can
be written as matrix expression involving MPI by

{ }2 1
, ( ) ( ) ( )k k k

d WA AW AW AW W
++ +⎡ ⎤= ⎣ ⎦                               (31)

 where  k= max {ind(AW), Ind(WA)}.

Proof: Due to the GAS of  , ,A A W W+ +  and ,d WA  there exists non-singular matrices
L,  A11and W11  , and nilpotent matrices A22 and W22 such that

11 1

22

0
,

0
A

A L Q
A

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

11 1

22

0
,

0
W

W Q L
W

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

1
10 0
,

00
W

W Q Q
−

+ −⎡ ⎤
= ⎢ ⎥

⎦⎣



Zeyad Abdel Aziz Al Zhour & Adem Kilicman

116 Malaysian Journal of Mathematical Sciences

Since  A22W22 and W22A22  are nilpotent matrices of index k, then (A22W22)
k  =0, and it is

easy to show that

111 11( ) 0
( ) ,

0 0

k
k A W

AW L L−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 ( ) ( ) 2 1

2 1 11 11 0
00

k
k A WAW L

− −
++ ⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎦⎢⎣

Computation shows that

( ) ( )[ ] ( ){ } +++ WAWAWAW kkk 12

= 
( )

⎥
⎦

⎤
⎢
⎣

⎡

00
0

1111

kWAL  
( )

⎥
⎦

⎤
⎢
⎣

⎡ −−

00
012

1111

kWA ( )
⎥
⎦

⎤
⎢
⎣

⎡

00
0

1111

kWA
 

1
1

11

00
0 −

−

⎥
⎦

⎤
⎢
⎣

⎡
QW

       = 
( ) ( ) ( ) 1

1

111111

12

11111111

00
0 −

−−−

⎥
⎦

⎤
⎢
⎣

⎡
QWWAWAWAL

kkk

= 
( ) 1

1

11

1

1111

00
0 −

−−

⎥
⎦

⎤
⎢
⎣

⎡
QWWAL

=  
( ) 1

1

111111

00
0 −

−

⎥
⎦

⎤
⎢
⎣

⎡
QWAWL

= wd
A

,

This completes the proof of Theorem 2.   

If A is a square matrix with Ind(A) = k and set W = In in Theorem 2, we obtain the
following corollary which is given by Wang [14]:

Corollary 2 Let 
n

MA∈ with Ind(A)=k , then

( )2 1k k k
dA A A A

++=       (32)

Theorem 3 Let 
qpmnnm

MBMWMA
,,,,,

∈∈∈  and 
pq

MR
,

∈  be matrices with

        ( ){ } ( ){ }1 2max , ( ) , max , ( )k Ind AW Ind WA k Ind BR Ind RB= =

 Also, let  Z W R= ⊗  and k = max {k1,k2}.   Then
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i. Ind  ( ){ }A B Z k⊗ =       (33)

ii. ( ) , ,, d w d Rd z
A B A B⊗ = ⊗       (34)

Proof:  i.   By assumptions, we have

1 1 2 21 1( ) ( ) , ( ) ( )k k k krank AW rank AW rank BR rank BR+ += =

From properties of Kronecker products, we have

rank ( ){ }r
A B Z⊗  = rank ( )( ){ }r

A B W R⊗ ⊗ =   rank { }rAW BR⊗

          = rank  { }rAW   rank  { }rBR   .

Similarly,

rank  ( ){ } 1r
A B Z

+
⊗ =   rank { } 1rAW +   rank {BR}r+1 .

It is obvious that the smallest non-negative integer such that

rank  ( ){ } 1r
A B Z

+
⊗ =  rank  ( ){ }r

A B Z⊗   .

is k = max {k1,k2} . Hence (33) is true.
ii. Let , ,d w d RX A B= ⊗   and  Z W R= ⊗  . From properties of the Kronecker product

and (5) we have
 ( )( ) ( )( )( ) ( ) ( )1 1

, ,
k k

d w d RA B Z XZ A B W R A B W R
+ +

⊗ = ⊗ ⊗ ⊗ ⊗

  ( )( ) ( )( )1 1
, ,

k k
d w d RAW A W BR B R+ +

= ⊗

  ( ) ( ) ( ) ( )( )( )kk k kAW BR AW BR A B W R= ⊗ = ⊗ = ⊗ ⊗

 ( ){ }k
A B Z= ⊗      (35)

( ) ( )( )( )( )( ), , , ,d w d R d w d RXZ A B ZX A B W R A B W R A B⊗ = ⊗ ⊗ ⊗ ⊗ ⊗

 ( ) ( ), , , , , ,d w d w d R d R d W d RA WAWA B RBRB A B= ⊗ = ⊗      (36)

  = X.

( )A B ZX⊗ = ( )( )( ), ,d w d RA B W R A B⊗ ⊗ ⊗

 = , , , ,d w d R d w d RAWA BRB A WA B RB⊗ = ⊗

 = ( )( )( ), ,d W d RA B W R A B⊗ ⊗ ⊗

      =  XZ ( )A B⊗ (37)
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From (35)-(37) we can obtain (34) immediately.   
If A and B are square matrices with Ind(A) = k1 and Ind(B) = k2, respectively, and

set W = Im and R = In in Theorem 3 we obtain the following corollary which is given by
Wang [13]:

Corollary: 3 Let mA M∈ and nB M∈ with Ind(A) = k1 and Ind(B) = k2, respectively.
Then

Ind ( ){ }A B⊗ =max{k1,k2}       (38)

and

( ) d dd
A B A B⊗ = ⊗       (39)

More particularly, if Ind(A) = Ind(B) = 1, then we have
 .

( ) g gg
A B A B⊗ = ⊗       (40)

Corollary: 4 Let ( ) ( ),i m i n iA M∈  and ( ) ( ) ( ), 1 , 2i n i m iW M i r r∈ ≤ ≤ ≥  be matrices with

            ( ) ( ){ }max , , 1, 2,..., .i i i i ik Ind AW Ind W A i r= =

Then

Ind 1
,

r

ii
A Z k

=

⎧ ⎫⎛ ⎞Π⊗ =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

      (41)

and ( ) ,1 1
,

i

r r

i i d wi i
d z

A A
= =

⎛ ⎞Π⊗ = Π⊗⎜ ⎟
⎝ ⎠       (42)

where k = max { }1 2, ,..., rk k k  and 1
r
i iZ W== Π ⊗ . In  particular,

i. if ( )i m iA M∈ and ( )1 , 2
ii nW I i k k= ≤ ≤ ≥ , we then have

1

r

ii
Ind A k

=

⎛ ⎞Π⊗ =⎜ ⎟
⎝ ⎠

      (43)

and

( )
1 1

r r

i i di i
d

A A
= =

⎛ ⎞Π⊗ = Π⊗⎜ ⎟
⎝ ⎠

          (44)

where k = max {Ind (Ai), i = 1,2...,r}
ii.  if Ind(A1)=Ind(A2)=...=Ind(Ar)=1, we then have

( )
1 1

r r

i i gi i
g

A A
= =

⎛ ⎞Π⊗ = Π⊗⎜ ⎟
⎝ ⎠           (45)
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Proof
The proof of (41) is by induction on r . The base case (when r = 2) has been established
in (33) of Theorem 3. In the induction hypothesis, we assume that

{ }1 1 1

1 1 1
I

r r r

i i i ii i i
Ind A W nd AW

− − −

= = =

⎧ ⎫⎛ ⎞⎛ ⎞Π⊗ Π⊗ = Π⊗⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎩ ⎭

{ }1, 2,..., 1max rk k kγ −= =

Now

1 1 1

r r r

i i ii i i
Ind A Z Ind A W

= = =

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞Π⊗ = Π⊗ Π⊗⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭ ⎩ ⎭

{ }1

r

i ii
Ind AW

=
= Π⊗

( )
1

1

r

i i r ri
Ind AW A W

−

=

⎧ ⎫⎛ ⎞= Π⊗ ⊗⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

{ } { }1 2max , max , ,...,r rk k k k kγ= = =

The proof of (42) is also by induction on r. The base case (when r=2) has been
established in (34) of Theorem 3. In the induction hypothesis, we assume that

( )
1
1

1 1

,1 1
,

ir
i i

r r

i i d Wi i
d W

A A
−
=

− −

= =
Π

⎛ ⎞Π⊗ = Π⊗⎜ ⎟
⎝ ⎠ e

Now

( )
1
1

1

,1 1
, ,

rr
i i

r r

i i r d Wi i
d Z d W

A A A
−
=

−

= =
Π

⎡ ⎤⎛ ⎞ ⎛ ⎞Π⊗ = Π⊗ ⊗⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦e

  ( ) ( )
1

, ,1 i r

r

i rd W d Wi
A A

−

=

⎛ ⎞= Π⊗ ⊗⎜ ⎟
⎝ ⎠
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r
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=
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The proof of three special cases in (43)-(45) are straightforward. 
One of the important application of Theorem 3 is that the weighted Drazin inverse of
Kronecker product arise naturally in solving the so-called restricted singular matrix
equations (RSME) as follows.

Theorem 4: Let , , , ,, , ,m n n m p q q pA M W M B M R M∈ ∈ ∈ ∈ and ,n qC M∈ be given constant

matrices and ,m pX M∈  be an unknown matrix to be solved. Also, let
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( )( ) ( )( )1 2, ,L R W k Ind B A L k Ind L B A= ⊗ = ⊗ = ⊗           (46)
such that

( )( ) ( )( ) ( )( ) ( )( )1 2 2 1, ,
k k k k

r B A L r L B A VecC R L B A VecX R B A L⊗ = ⊗ ∈ ⊗ ∈ ⊗

      (47)
Then the unique solution of the following RSME

( ) ( )TWAW X RBR C=      (48)

is given by

, ,
T

d W d RX A CB=       (49)

Proof
Using identity (21) it is not difficult to transform (48) into the vector form as:

( )( )L B A L VecX VecC⊗ =       (50)
It is easy to verify under conditions (47) that the unique solution of (50) is

( ) ( ), ,, d R d Wd L
VecX B A VecC B A VecC= ⊗ = ⊗

         ( ), ,
T

d W d RVec A CB=

which is the required result. 
An important particular case of Theorem 4 is that when m = n, p = q, W = Im and
R = Ip, we obtain the following corollary:

Corollary 5 : Let ,m pA M B M∈ ∈  and ,m pC M∈  be given constant matrices and

,m pX M∈  be an unknown matrix to be solved.  Then the unique solution of the following
RSME

: ,TAXB C VecC=  ( )kVecX R B A∈ ⊗  ( ),k Ind B A= ⊗       (51)
is given by

T
d dX A CB=       (52)

CONCLUSION
In this paper, we have presented two general representations for weighted Drazin
inverse related to Moore-Penrose inverse and Kronecker product of two and several
matrices. These representations are viewed as a generalization of Wang's results in
[13, Lemma 1.1, and 14, Theorem 2.2]. Furthermore, some necessary and sufficient
conditions for Drazin and weighted Drazin inverses are given for the reverse order law

(AB)d=BdAd and ( ) , ,, d R d wd zm
AB B A=  to hold. Although the results are applied to solve

the restricted singular matrix equations, the idea adopted can be easily extended to
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solve the coupled restricted singular matrix equations. It is natural to ask if we can
extend our results to the Minkowski inverse in Minkowski space. This will be part of
future research.
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